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* To enable integration of hundreds of GVVs of solar generation to the
U.S. electric power system, this project will develop a unique PV
inverter design that combines high-voltage Silicon Carbide (SiC) with
revolutionary concepts such as additive manufacturing and multi-
objective magnetic design optimization

* The final deliverables from the project will include:

a) High power density (>100W/in3), high efficiency (>98%) power block
and 50 kW prototype inverter

b) Additive manufacturing techniques for power block and heat sink
c) Magnetic design optimization tool

d) A versatile controller

e) Standard HIL inverter testing techniques

f) Cost and reliability analysis of SiC based PV inverter
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SunShot PE Target Metrics

Attribute Target Metric'®
Conversion Efficiency: Defined as the ratio of the usable output > 98%
power (AC or DC) versus available input power from the PV panels.
Typically, the PV inverters in the U.S. are tested to the CEC
(California Energy Commission) efficiency using a weighted
formula™
Service Life and Reliability: Defined as the useful life of the power > 25 years”’
electronic subsystems to support the required plant availability under
normal operation and maintenance
Power Density: Defined as the ratio of rated output power versus > 100 W/in’ for residential and

device volume and weight. small commercial systems
System Cost: Defined as the lifetime cost of the power electronic < $0.10/W, utility scale
device, including initial capital cost and the operation and < $0.125/W, commercial scale
maintenance (O&M) cost over the service life. < $0.15/W, residential scale

Grid-Support Functions: These include a host of smart inverter Compliance with ANSI, IEEE,
functions such as voltivar, volt/watt, frequency/watt, voltage and NERC standards?" %%
ride-through, power factor control, reactive power support,
ramp rate control, and so on. These functions can be activated
either autonomously through default settings or remotely
through utility SCADA commands.

Interoperability. Defined as the capability of the power electronic Compliance with Open
devices to exchange and readily use information—securely, Standards which include
effectively with other system components. SunSpec Modbus, Smart

Energy Profile (SEP 2), IEC
61850, MultiSpeak, and DNP3
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Project Technical Approach
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Project Technical Approach
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Thermal and Mechanical Design
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AM-based Power Block with 1700V SiC
MOSFETs and Diodes

Dynamic Characterization

of SiC MOSFET
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Power Block - Testing

" The switching performance of the SiC module is evaluated through a high

voltage double pulse test setup
Inltlal Test Results for SiC Module

Overcurrent protection Load inductor S
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= Power stage with high voltage (>2000V = Preliminary test: 700V dc bus voltage and
DC) and current capability (>20A RMS) 55A load current
= Embedded solid-state circuit breaker for = Excellent turn-on switching behavior;
fast and reliable overcurrent protection moderate turn-off ringing due to non-

optimized external power loop connection
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Inductor Design Using Multi-Objective
Optimization

AMPVI Circuit Topology
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Example: AC Inductor Design
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Controller

Control Algorithms and Simulation Validation

Grid-tied Current Control
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Controller Hardware and
Interface

Power
Module

ORNL Gate
Driver Board

Interface
Board

NI 9607

NI 9683
Controller
SBRIO: Xilinx Zyng-7000, 667 MHz
dual-core ARM Cortex-A9
processor, an Artix-7 FPGA, and a
mezzanine card connector
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Controller Hardware-in-the-Loop (CHIL)
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Component Layout (Alpha-prototype)
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Thermal Design Process
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Components are grouped into three thermal subsystems :
|: DC capacitors, DC current and voltage sensors
ll: power block, LCL filters

l1l: Control board, AC current and voltage sensors
Subsystem |l has largest heat loads and therefore becomes the main focus in thermal design

The inverter designed volume is 1378 in3, yielding a power density of approximately 36 W/in3
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Evaluation of Thermal Design

Air Temperature Distribution

Inletvent
Inletvent
Pressure outlet

Fans (one named
selection)

N
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Sample Mesh

- Heat exchanger is modeled F e iy
as a porous media within & '
ANSYS

- Parameters are defined to o &
match the desired pressure & s
drop versus flow of the e

specified heat exchanger

Preliminary CFD Simulations
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AMPVI Design Process Flow
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Stakeholder Engagement

* Technology advisory panel (TAP)

— Getting industry feedback and building industry interest in developed
technologies for future commercialization

— TAP was formed and currently have four members Solectria, Unified Power,
National Instruments, Semikron USA

|-hour call in every 3 months

eSolectria eRohm?
eUnified
Power

No travel requirement

= Typically be at high level without
discussing any detailed technology or " erter Chip

| Ps Manufacturer Manufacturer
Manufacturer Packaging
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" May need to sign a multi-party NDA
if detailed technologies discussed

Controller Power Stage
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